Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Development of extended-release formulation of domperidone using a blend of Raphia hookeri gum and hydroxypropyl methylcellulose as tablet matrix

Emmanuel O Olorunsola , Stephen O Majekodunmi

Department of Pharmaceutics and Pharmaceutical Technology, University of Uyo, Uyo, Nigeria;

For correspondence:-  Emmanuel Olorunsola   Email: olorunsolaeo@yahoo.com   Tel:+2348035067306

Accepted: 23 September 2017        Published: 31 October 2017

Citation: Olorunsola EO, Majekodunmi SO. Development of extended-release formulation of domperidone using a blend of Raphia hookeri gum and hydroxypropyl methylcellulose as tablet matrix. Trop J Pharm Res 2017; 16(10):2341-2347 doi: 10.4314/tjpr.v16i10.5

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To develop an extended-release formulation of domperidone using a blend of Raphia hookeri gum and hydroxypropyl methylcellulose as tablet matrix.
Methods: Tablets (400 mg) containing 30 mg domperidone (DPD) were formulated using binary mixtures of hydroxypropyl methylcellulose (HPMC) and Raphia hookeri gum (RHG) as matrix former; and microcrystalline cellulose (MCC) as direct compression excipient. The proportions of the matrix formers (40 % of tablet weight) was varied as 100:0, 75:25, 50:50, 25:75 and 0:100. The composition of the matrix former was also kept constant (50:50) while MCC was varied as 40, 30, 20 and 10 %. The tablets were evaluated for compact density, tensile strength, friability and drug release over 24 h.
Results: The tensile strength of tablets decreased while their friability increased with increase in the proportion of RHG. A similar trend was observed with decrease in the concentration of MCC. Tablets containing RHG alone as matrix former and 40 % MCC as direct compression excipient had tensile strength of 0.95 MNm-2, friability of 1.07 % and cumulative drug release of 83.2 % over a period of 24 h. Tablets containing equal proportions of HPMC and RHG as matrix former had the best release properties of 95.0 % over a period of 24 h.
Conclusion: RHG is comparable with HPMC in terms of extending the release of domperidone for a once daily administration. A suitable combination of the two polymers for use as a matrix former is superior to either of the individual polymers.
 

Keywords: Domperidone, Extended drug release, Hydroxypropyl methylcellulose, Raphia hookeri gum, Tablet properties

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates